A computational study of cycloaddition reactions of d8 metal tetroxide (iron, ruthenium, osmium) complexes with C60.

نویسندگان

  • Jeng-Horng Sheu
  • Ming-Der Su
چکیده

The potential energy surfaces of the cycloaddition reactions MO(4)(NC(5)H(5))(2) + C(60)→ MO(4)(NC(5)H(5))(2)(C(60)) (M = Fe, Ru, and Os) have been studied at the B3LYP/LANL2DZ level of theory. It has been found that there should be two competing pathways in these reactions, which can be classified as a [6,5]-attack (path A) and a [6,6]-attack (path B). Our theoretical calculations indicate that, given the same reaction conditions, the cycloaddition reaction of C(60)via [6,6]-attack is more favorable than that via [6,5]-attack both kinetically and thermodynamically. This is in good agreement with the available experimental observations. A qualitative model, which is based on the theory of Pross and Shaik, has been used to develop an explanation for the barrier heights. As a result, our theoretical findings suggest that the singlet-triplet splitting ΔE(st) (= E(triplet)- E(singlet)) of the d(8) MO(4)(NC(5)H(5))(2) and C(60) species can be a guide to predict their reactivity towards cycloaddition. Our model results demonstrate that the reactivity of d(8) metal tetroxide cycloaddition to C(60) decreases in the order FeO(4)(NC(5)H(5))(2) > RuO(4)(NC(5)H(5))(2) > OsO(4)(NC(5)H(5))(2). In consequence, we show that both electronic and geometric effects play a decisive role in determining the energy barriers as well as the reaction enthalpy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemistry in liquid sulfur dioxide. 8. Oxidation of iron, ruthenium, and osmium bipyridine complexes at ultramicroelectrodes at very positive potentials

Inorganic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Electrochemistry in liquid sulfur dioxide. 8. Oxidation of iron, ruthenium, and osmium bipyridine complexes at ultramicroelectrodes at very positive potentials Edwin Garcia, Juhyoun Kwak, and Allen J. Bard Inorg. Chem., 1988, 27 (24), 4377-4382 • DOI: 10.1021/ic00297a010 Downloade...

متن کامل

Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements.

Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647-658. 1962.-Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of cer...

متن کامل

Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents.

The field of medicinal inorganic chemistry is rapidly advancing. In particular organometallic complexes have much potential as therapeutic and diagnostic agents. The carbon-bound and other ligands allow the thermodynamic and kinetic reactivity of the metal ion to be controlled and also provide a scaffold for functionalization. The establishment of structure-activity relationships and elucidatio...

متن کامل

Dicarba-closo-dodecarborane-containing half-sandwich complexes of ruthenium, osmium, rhodium and iridium: biological relevance and synthetic strategies.

This review describes how the incorporation of dicarba-closo-dodecarboranes into half-sandwich complexes of ruthenium, osmium, rhodium and iridium might lead to the development of a new class of compounds with applications in medicine. Such a combination not only has unexplored potential in traditional areas such as Boron Neutron Capture Therapy agents, but also as pharmacophores for the target...

متن کامل

The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway.

Organometallic half-sandwich complexes [M(p-cymene)(azo/imino-pyridine)X](+) where M = Ru(II) or Os(II) and X ═ Cl or I, exhibit potent antiproliferative activity toward a range of cancer cells. Not only are the iodido complexes more potent than the chlorido analogues, but they are not cross-resistant with the clinical platinum drugs cisplatin and oxaliplatin. They are also more selective for c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 40 16  شماره 

صفحات  -

تاریخ انتشار 2011